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Design Equations for Symmetric
Microstrip DC Blocks

DARKO KAJFEZ, SENIOR MEMBER, IEEE, AND B. SARMA VIDUL~ MEMBER, IE13)3

Abstract-The daign fornmfas are presented for achieving either a
rippled or a maxhmdly flat response of the dc blocks built with symmetri-

cal coupled micro5trip fines. The selection of eharacte&tic hnpwbmm of

the odd and even modes is facilitated by tbe use of a universaf diagram
containing the equicontonrs of the standii wave ratio and of the band-
width. The deformation of the frequency response due to a difference in
wavelengths of the odd and even modes is anafyzed and the ales@
procedure is adjusted accordingly.

I. INTRODUCTION

A SECTION of parallel coupled symmetric transmis-

sion line can be used to transmit certain range of

microwave frequencies without attenuation, but acts as an

open circuit at dc. La Combe and Cohen [1] have named

such a device a dc block, and reported the experimental

data showing a wide-band operation of the device de-

signed on microstrip. Rizzoli [2] has approached the de-

sign of dc blocks from the TEM assumption, and pre-

sented design formulas and graphs for selected special

cases. We intend to present the results of further investiga-

tion of the properties of the dc blocks. Our analysis is

based on an exact expression of the scattering parameter

Szl which fully takes into account the possibility that the

propagation modes on coupled microstrip are of the quasi

TEM type, and that the input and output impedances

may be different from each other. It will be shown that

the design procedure can be based on the equations for

the pure TEM modes, and that the presence of the quasi

TEM modes requires only a minor correction of the

physical length of the coupled section. It will also be

shown that there exist two different solutions both yield-

ing a rippled response with the prescribed bandwidth and

the prescribed standing wave ratio. The presentation is

organized in such a way that either the values of ZOe and

ZOO can be computed for a prescribed bandwidth and

prescribed standing wave ratio or the attainable band-

width and standing wave ratio may be read from the

curves on the normalized ZO., ZOOplane.

IL FREQUENCY RESPONSEOF THE TRANSMISSION

COEFFICIENT

The dc block in Fig. 1 is inserted between a generator

with internal resistance R ~ and load resistance R ~. The
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Fig. 1. Coupled transmission-line dc block.

operating properties of this circuit can be best described

by the scattering matrix transmission coefficient S’21.For

the case that the even and the odd mode wavelengths

differ from each other due to the presence of inhomoge-

neous dielectrics, the transmission coefficient is

2( Zoecosec O,– Zoo cosec 00,
s 21= .

[[j!r+yq(Zoecot 8e+zoocot eo)

[

Z;e + Z2
+j ‘“’Z””(cosec Oecosec 90

2ti - l/~

11+ cot eecot 9.) + 21/~ “ (1)

The above equation has been derived from the formulas

given by Zysman and Johnson [3] by performing the

transformation from the chain matrix to scattering matrix

[4], The electric lengths of the even and odd mode (in

radians) are

(2)

with k being the free-space propagation constant

k=a)~ , (3)

Symbols e,O and c,. denote the relative dielectric constants

of the odd and even modes. The coupled transmission line

has length 1, and it is symmetric so that the modes of

propagation are strictly odd and strictly even, described

by the characteristic impedances ZOOand ZOe.

It is convenient to introduce the normalized odd and

even mode impedances

z ~o= 00
‘e= ~~

tik

(4)
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and the impedance transformation parameter

975

(R, +R2)2

‘2= 4R1R2 “
(5)

The frequency dependence will be described in terms of

variables fle and f10

Qe=cOt 8, O.= cot 00. (6)

The quantity of interest in the design of the dc block is the

squared amplitude of the transmission coefficient, the

transmission loss

4(ze{i-zo@@)’

‘s2”2= (4K’(Z.Q=+ZOQO) ’+{+(Z:+Z:+4)

-zezo[fleslo+((~ ] ])2.(7

From “&is expression it is possible to study how the

difference in the wavelengths of the odd and even modes

influences the overall response as a function of frequency.

This will be done in Section VI. In order to understand

the basic mechanism of the frequency dependence, (7) will

be first simplified for the special case of pure TEM

propagation, when the two modes have the same wave-

length

OO=t?e=e.

Then, the expression for the transmission

following form:

1s2,/2=
1+L?2

aO+a2f12+a4f14 “

(8)

loss takes the

(9)

The coefficients of the polynomial in the denominator are

(lo)

4K2(Z=– ZO)2–2Z,Z0 [( Z,-ZO)2+4-8K2]
a2= (11)

4(ze–zo)2

()Zezo 2
ad= — .

Ze—20
(12)

As seen in (9) IS2112 is a ratio of a linear and another

quadratic expression in terms of $22. Naturally, the idea

occurs to choose the coefficients in such a manner that

some Chebyshev-like or a ButterWorth-like response is

obtained. This can indeed be achieved if appropriate care

is taken in two inconveniences: first, (10) to (12) are

nonlinear in z. and ZO, and second, there are three coeffi-

cients: a., a2, and aa, but only two really independent
variables: z, and ZO. In most applications, K’ is namely

equal to unity.

The transmission loss is a symmetric function of

frequency variable Q. By a proper choice of coefficients

ao, az, and ad, the frequency dependence may be shaped

in the form of a ripple such as shown in Fig. 2. At the

center frequency of operation, the frequency variable Q is

zero, and IS21[2= 1/aO. If the dc block is assumed to be

II I II
II I ‘1
II [ Il$a

-~-h o ~ a,

Fig. 2. Rippled response.

lossless, the standing wave ratio S at the input port is

related to a. ;asfollows:

ao= (s+ 1)2
4s “

(13)

The position of the two maxima in Fig. 2 maybe obtained

from the requirement that the first derivative of (9) with

respect to G?is zero. This requirement gives

(14)

The cutoff point QC is defined as a point in which ISz,Iz
takes the same value 1/a. as at the center frequency

ao—a2
Q:= —------

ad
(15)

The value of $?. specifies the frequency bandwidth as

follows: If the lower

edge frequency is f2,
defined as

edge frequency is f, and the upper

then the relative bandwidth can be

~ _2f2–fl

‘– ~“

The relationship with the variable fi?Cis then

The second derivative of IS2112 at Q= O is

d21S21]2 2(a0–a2)

df12 0=0= a; “

(16)

(17)

(18)

The condition for the existence of ripple is that (18) is

positive. If (18) is made equal to zero, a maximally flat

response is obtained (see Section. IV).

111. DESIGN FOR RIPPLE WSPONSE

Coefficient a. determines the value of the response at
the center frequency, as shown if Fig. 2. Since the input
standing wave ratio S should not exceed certain pre-

scribed value, a. is specified by (13). Solving (10) for

z. – ZO, the following two solutions are obtained:

= 2fi
2

Ze, -- Zol Ze’—zo’=—.
*

(19)

Subscripts 1 and 2 have been used to denote solution one



976 IEEE TRANSACTIONS ON MICROWAVl THEORY AND TECHNIQUES, VOL. MTr-28, NO. 9, SEPTSMRER 1980

and solution two correspondingly. From (12) it follows

that the two solutions are related as

2%
ze,zo, =2m ~

“’z”’= * “
(20)

A second subscript has been added to ad to denote the

possibility of two different choices for this coefficient,

corresponding to either solution one or solution two.

An important design parameter is the bandwidth of the

device which is related to the coefficients ao, az, and ad

by (15). Since a. is already fixed by (13), it is now possible

to eliminate a= from (11) and (15) and find the values aql

and a42 which are to be used in (20).

It is noted that (11) contains an additional parameter

K’, which does not appear in (10) or (12). The significance

of this impedance transformation parameter may be a

topic of a separate investigation [4], [5]. At present, it will

be assumed that the source and the load impedances are

equal to each other, so that K 2 is unity. Then, the two

positive solutions for m are found from (11) and (15)

as follows:

(21)

These values are now substituted in (20), which together

with (19) gives a system of two equations for the normal-

ized even and odd mode impedances in terms of the

prescribed standing wave ratio and bandwidth. Therefore,

when RI= R2, the following design equations are obtained

for solution one:

[ Oq=Fx]’23)Ze, =ti 1+ ~+

r 1

The design equations for solution two are

r 1

(26)

An interesting conclusion which can be reached from

these formulas is the fact that any arbitrary combination

of the chosen values for the bandwidth and the standing

wave ratio can be achieved by real and positive values of

z, and ZO. Whether these values can be fabricated in a

given microstrip configuration is a question which will be

addressed later in Section V.

The magnitude of the scattering coefficient S21 of a

passive two-port cannot be larger than unity. In Fig. 2, the

maximum value of IS2, \2 is denoted by 1/a~. For a ripple

design am is bounded by

l<a~<ao. (27)

}t is of interest to find the values which am attains for

the two designs named solutions one and two. When

$2= !il~, such as specified by (14), am can be computed

from (9) as follows:

am =ao–a~fl~. (28)

For solution one, ad is specified by (21). It is then found

that

aml = 1 (29)

for any selection of L?Cand S. Therefore, when z, and ZO

are selected in accordance with (23) and (24), the resulting

response IS2112 always touches the value of unity at the

two maxima shown in Fig. 2. On the other hand, solution

two results in the following am:

a ‘= (s+1)2 _ (s-1)2
m 4s 4SQ4 [-’+/=]2. (30)

c

This value never becomes unity, but is always smaller

than aO in accordance with (27). For small and moderate

bandwidths SIC<1, and aw2 is only slightly different from

a.. In that case, the frequency response of solution two

looks almost like a maximally flat response.

IV. DESIGN FOR MAXIMAL LY FLAT RESPONSE

The frequency becomes maximally flat when the second

derivative from (18) vanishes, i.e., when a= is equal to ao.

If a perfect impedance match is to be achieved at the

center frequency, a. should be unity. Therefore, a maxi-

mally flat dc block, which is also reflectionless at the

center frequency, requires the following choice of coeffi-

cients:

ao=a==l. (31)

Substituting (31) into (9), the following frequency re-

sponse is obtained:

1s2,12=
1+Q2

l+ Q2+agQ4’

Therefore, a~ is the only parameter which

to influence the bandwidth of the device.

Comparing Fig. 3 with Fig. 2, is seen
width and the cutoff frequency of the

(32)

can be selected

that the band-

maximally flat

device must be defined in a somewhat different manner

than in the case of the ripple response, Hence, the cutoff

frequency OCwill be defined as the frequency at which the

coefficient IS2112 drops to the value 1/aC, where a= is

related to the input standing wave ratio S= in the same
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way as in (13)

A1s2,?
I
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I/oc ,

I I
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Fig. 3. Maximally flat response.

(Sc+l)’
a==

4SC “
(33)

The relationship between L?Cand the relative bandwidth B,

remains the same as in (17).

When the requirement aO= 1 is substituted in (10), the

solution for z. – ZOis found to be single valued

ze—zo=2. (34)

When this is used in (12) it follows

zezo=2q . (35)

It was found earlier that the maximally flat response

requires a2 to be unity. From (1 1), (34), and (35) it follows

a2 =sc’+21&(K’- l). (36)

When the impedance transforming parameter K 2 is larger

than unity (i.e., when R, #R2), it is impossible to make az

equal to unity. Therefore, the maximally flat response can

be achieved only when the input and output resistances

are the same. In such a nontransforrning case K’= 1, and

a2 in (36) is identically equal to unity, irrespective of the

value at.

At the cutoff frequency fl, the value of IS2112 drops to

l/at. The value of aa is then found from (32)

(37)

where ae is specified by (33). The above value of ag is now

substituted in (35), which together with (34) gives a system

of two equations for z= and ZO. The design equations for

the maximally flat response are then found to be

2,=1+-
c

(38)

‘0=-1+- ‘3’)
c

It is seen that the real positive solutions will be obtained

i
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Fig. 4. (a) (ZO,, ZOO)plane for substrate c,= 9. (b) (cr., C,O)plane for
substrate .sr==9.

for z, and ZOwith arbitrary choice of design parameters S

and !ilC.
When the coefficient a~ is selected to be equal to 0.25,

the rnicrostrip dc block achieves the dimensions of a 3-dB

directional coupler. This particular case has been analyzed

by Ho [6], and has been later found by Rizzoli [2] as

unfeasible in conventional microstrip technology. Our

equation (37) offers more room for compromise between

the bandwidth and the standing wave ratio.

V. GRAPHICAL PRESENTATION ON THE (z=, ZO)

~ANE

For a given substrate, the possible range of values Zoe

and ZOO may be plotted in a diagram such as shown in

Fig. 4(a), which has been introduced by Chambers [7].

The parameters in this diagram are the strip width w and

the gap width s. The advantage of this representation is

that one can easily spot the areas which are not well

suited for fabrication, either because of narrow gap, or

because of narrow conductor width. From the designer’s

point of view, it would be convenient to have an answer to
the following problem: for a given choice of ZOO and 20=

find the corresponding bandwidth and the standing wave

ratio of the dc block.
The universal graphical solution to this problem can be

presented on a normalized (z,, ZO) plane. It is assumed

that the load and source impedances are equal to each
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4,0

30

20

(z,, ZO) plane he must move in order to increase the

bandwidth or to reduce the standing wave ratio.

If one desires a numerical answer instead of the graphi-

cal, one may use (41) directly for computation of the

standing wave ratio. In order to compute the bandwidth,

one solves (42) for @

4zezo

‘= (ze-zo)’-4 “

Next, (40) is solved for L?:

()L?:=; :+2.

Finally, one finds the relative bandwidth from (18)
A

Br=2–~cot-’Qc.
77

(43)

(44)

(45)

/ -8 C.U

o 1 I I I 1 I t t I 1 I lows:
.

It may be seen from (44) that any positive values of @

results in a real B,. Therefore, all the points above the

straight line for S= 1 give an acceptable ripple solution

with a real positive value for QC.

The discussion of solution two runs similarly, yielding a

somewhat more restricted area on the (z., ZO) plane. First,

an auxiliary frequency function $?($2=) is defined as fol-

0 I ,0
‘0 ‘~ *(Q)=*

Fig. 5. Universsl (2., 2.) plane.
c

n: “

When * is eliminated from (25) and (26),
other, so that the two solutions for the normalized even- obtained:

and odd-mode impedances for the ripple behavior are
2

specified by (23) to (26). For solution one, an auxiliary Ze. zo. —

frequency function @(QC) can now be defined as follows: m“

(46)

the following is

(47)

If @ is eliminated

obtained:

.(Q)=M!EZ’
l%is equation specifies a family of straight lines inclined

45° with respect to the ZO axis. These lines are located
(40) below the line S= 1, as can be seen in Fig. 5. Thec 02 ‘

Wic

bandwidth may be read from the curves which are ob-

from (23) and (24), the following is tained by eliti-nating S from (25) and (26)

ze–zo=2v3 . (41)
These are again

On the (Ze, Zo) plane, this is a straight line inclined 45° (if ~YObtains ‘he

z. and z. are drawn in the same scale), which intersects

the z= axis at the point 2@ . All the points located above

the line S= 1 belong to solution one.
The bandwidth can be found by eliminating S from (23)

and (24). The result of such elimination is

2@+4
z:——”

@
zezo+z; =4.

This is the equation of a rotated hyperbola,

(42)

4–2*
z:+~ zezo+z:=4.

.

hyperbolas. When (48) is

expression for numerical

4zezo
*(Qc) =

4–(Z, –ZO)2

The cutoff frequency variable is then

(48)

solved for Y,

determination

(49)

(50)

centered at and the bandwidth B. is afterwards computed by (45). The

the origin, as shown in Fig. 5. For each relative bandwidth largest value which “Y can achieve is 0.5, otherwise L?:

B,, a corresponding !ilC was computed by (16), then @(OC) becomes negative and there is no real solution for the

was computed by (40), and the resulting curve Z=(ZO) was ripple bandwidth. In Fig. 5 is seen that the points belong-

plotted point by point. The obtained diagram is universal, ing to solution two are located in the area below the B,= O

since it is plotted in normalized values z, and ZO. The curve. For common microstrip substrates and for the

designer can immediately spot in which direction on the characteristic impedance 50 Q, this area is usually not
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within the range of practical dimensions. For example,

taking S= 1.2 and B,= 0.5, the solution two for the 500

impedance requires ZO, = 93.4 L? and ZOO=2.14 fi, These

values would require an extraordinarily narrow gap in the

conventional microstrip technique. However, solution two

may turn out to be feasible in another technique, such as

the suspended microstrip.

Fig. 5 clearly identifies several regions on the (z,, ZO)

plane. The straight line inclined 45°, starting at the point

Ze= 2, ZO= O, designates the points which produce the

maximally flat response. The rippled response for solution

one (i.e., the response with am= 1) is obtained if the point

is selected above this straight line, whereas the points

immediately below the straight line produce a nonrippled

response. The area around the origin, limited by the curve

B,= O also results in a rippled response, which corresponds

to solution two (with am> 1, the ripple not fully de-

veloped). Therefore, for any particular choice of ZOe and

ZOO the designer may immediately see from the diagram

which type of response will be obtained.

VI. EFFECT OF THE DIELECTRIC INHOMOGENEITY

( On a symmetrical coupled microstrip, the propagation

modes are not pure transverse electromagnetic (TEM),

but rather hybrid electromagnetic (HEM) [8]. The two

dominant HEM modes, the odd and even modes, have no

cutoff frequency and exhibit a behavior common to TEM

modes; because of that, they are called quasi-TEM modes,

While both odd and even TEM modes have equal wave-

lengths, the wavelength of the odd and even quasi-TEM

modes on microstrip may differ from each other for 10

979

Fig. 6. Nondispersive behavior of 0, and O..

The computed values of Cre and 6,0 for the microstrip

substrate with c,= 9 are shown in Fig. 4(b). For a given

choice of ZOe and ZOO, the normalized dimensions s/h and

w/h may be read from Fig. 4(a). Then, the corresponding

c,= and C,Oare found in Fig, 4(b). It is seen from the figure

that ~,, and C,O do not differ much from each other.

Therefore, angle 8 is small in comparison with n/2.

When (52) is substituted in (7) the amplitude of the

transmission coefficient S21 becomes

1s2,1”=
4(l+tan28)(ze–zO)2( l+ fl~v)U2

(54)
V2+W2

where the quantities U’, V2, and W2 are defined as

follows :

[ I
2

z (1–fl~vtan8) -zO(l+fl,v+tan8)
U2= e

(z,-zO)(l-@,tan2 fS)
(55)

L

percent or more. In this section, it will be investigated

how the difference in wavelengths influences the frequency

response of the dc block.

In the low microwave region the dispersion is not

significant, and both even- and odd-mode electrical lengths

0, and 80 of a coupled section of physical length I are

linear functions of frequency as dictated by (2) and (3).

The linear relationship is illustrated in Fig. 6. The average

value of the two electrical lengths is denoted by $,v

e +0
t?.v=y. (51)

The deviation of 6. or 00 from Oavis denoted by S

a=oav–eo=ee–eav, (52)

In terms of the effective dielectric constants of the even

and odd modes 8 becomes

p=4K2 I I

z,(fl,v-tan8)(l –~,vtant3) +zO(S&,+tan8)(l +flavtan8) 2
(56)

1– fil~vtan2 ~

[ ( )]
2

1 +2&v+ tan2 NJ~v
W2= ;(z:.+z; +4)–zezo . (57)

1–Q&tan28

Since ~ is small, terms tan2i3 can be neglected. Introducing

again the coefficients a., a2, and a~, the frequency re-

sponse simplifies to

1s2,12=
1 + Q:v

()

l–e,
.— (58)

aO+a2f&+aqfl&. l–e2 -

The first palrt of the expression is identical with the

frequency response of a pure TEM dc block, with flav

taking the place of the frequency variable. The part in

parenthesis consists of two error terms specified as fol-

lows!

(59)

e2=2K2-.
1 + (g,

(Jav tan 8. (60)
Ze—Z. ao+a2i2&+adfl~v
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Both these terms are small in comparison with unity and

both have the same sign. When el = ez, the factor in

parenthesis of (58) becomes unity, and IS2112is expressed

by the same formula as in the pure TEM case. If the

coefficients a. to a~ are selected in accordance with solu-

tion one, it is seen from (60) that ez = e ~ at the two

frequencies L?,V= fl~ and Q,v = – !d~. At these two fre-

quencies the ripple response reaches unity for the quasi-

TEM section, just the same as it did for the pure TEM

section. At other frequencies there is a small difference

between the two responses. This difference has been com-

puted numerically for the design example from Section

VII and it has been found that within the passband the

difference from the ideal response is less than 0.002 dB.

The design of the rnicrostrip dc block can be therefore

based on the formulas which were derived previously for

the pure TEM case. After selecting ZOe and ZOO, the

values of the e,. and <,0 are found from the diagrams in

Fig. 4(a) and 4(b). Then the “average” effective dielectric

constant is computed from
——

Vcro + Vcre
<= z (61)

and the physical length of the coupled section is selected

to be one quarter of the average wavelength

where X is the free-space wavelength. The resulting ripple

behavior is, for all practical purposes, identical with an

ideal response of a pure TEM case.

VII. DESIGN EXAMPLE

The design objectives were chosen as S= 1.19 and B,=

0.4 with RI= Rz = 50 fl. From (23) and (24), the normal-

ized even and odd impedances (solution one) are com-

puted to be z,= 3.300 and ZO= 1.119. Denormalizing in

accordance with (4) gives ZOe= 165.0 G and ZOO= 55.93 fl.

The dc block is to be constructed on a substrate 1.857 mm

thick (62.5 roil) with c,= 9.0. From diagram 4(a) the

normalized dimensions are found to be w/h= 0.097 and

s/h = 0.11. Therefore, w= 0.15 mm ands = 0.17 mm. From

diagram 4(b), the corresponding effective dielectric con-

stants are found to be c,== 5.67 and C,O= 5.02. Then the

average effective dielectric constant from (61) is ~ =

2.31. Taking the center frequency to be 3.0 GHz, the

length of the coupled section is computed from (62) to be

10.82 mm.

The fabrication procedure by photoetching does not

result in very precise dimensions. Under the microscope, it

was found that the average conductor width is 0.158 mm

and the average spacing is 0.227 mm, the latter being

considerably off the design value. If these dimensions are

used to recompute the actual values of the even- and

odd-mode characteristic impedance, it is found that 20==

158.6 and ZOO= 59.19 fl (instead of 165.0 and 55.93). It

would be possible to correct the mask accordingly and

repeat the fabrication so that the dimensions come closer

-50,0
24 30 36

FREQUENCY — GHz

Fig. 7. Measured return loss.

FREQuENCY _ GH2

Fig. 8. Measured transmission loss.

to the design values. This was not done, and the device

was measured as fabricated.

The measured results are shown in Figs. 7 and 8. Each

figure includes two separate recordings for the forward

and reverse connections of the microstrip dc block, re-

spectively. The input standing wave ratio in Fig. 7 is

better than 1.19 (–21 dB) in the range from 2.4 GHz to

about 3.6 GHz, with an exception at 3.36 GHz. Taking

into account that the transitions from coax to microstrip

may be producing some additional mismatch, the agree-

ment for the input standing wave ratio is satisfactory.

The transmission loss is shown in Fig. 8. Within the

design bandwidth, the measured value is found to vary

between 0.6 dB and 0.8 dB. About 0.15 dB of this loss is

attributed to the microstrip and coaxial line leading to the

coupled section, and the remaining attenuation is due to

the dissipative loss within the coupled section.

It may come as a surprise that the ripple is not visible in

the measured curves in Fig. 8. One must realize, however,

that the ripple which corresponds to S= 1.19 is only

0.0328 dB, too small a value to be visible on the display

utilized here, In addition to this, actual dimensions are not

such as theoretical. In Fig. 4(a), the theoretical goal is

point A, located on the straight line S-1.19. The actual

dimensions of the coupled microstrip are presented by

point B. It can be seen that we have actually achieved the

maximally flat operation, since point B is located right on

the line S= 1.

Another model designed for a narrower bandwidth and

smaller standing wave ratio was also operating quite close

to the design goals. The design procedure described above

is thus found to be useful for practical applications, and

the mechanical tolerances do not seem to be excessively

demanding,
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Spectral Domain Analysis of Dominant and
Higher Order Modes in Fin-Lines

LORENZ-PETER SCHMIDT AND TATSUO ITOH[, SENIOR ~MBER, IEEE

Abstnrct-The spectraf domain aoalysfe is appfied for derivfng dfsper-

L n ekRcMsUaJ of dmnfnant and higher order modes fn ffn-ffne struc-
tures. fit addition to the propagation conatan~ the characterfatic fmpedance
fs ad- baaed on the power-voltage defioftfon. Nurnerfcaf reauk are

CO- f~ dfffmnt cfwk of tifs funetfons and auow to estimate the
aecumey of the solution.

I. INTRODUCTION

T HE FIN-LINE structure is a special printed transmis-

sion line proposed for millimeter wave integrated

circuits in 1973 by Meier [1]. Since then, a number of

millimeter-wave components have been developed in the

fin-line form (e.g., [2]). The single-mode range of frequency

is relatively wide, as the fin-line somewhat resembles the

ridged waveguide. Propagation characteristics of fin-line

structures have been investigated by a number of workers

such as Hofmann [3], Hoefer [4], [5], and Saad and

Begemann [10]. In [3], which is based on Galerkin’s method

in the space domain, sinusoidal functions are used as

expansion functions. Hence a comparatively large number

of expansion functions is required to obtain accurate

results and, in addition, relative convergence problems

occur and have to be handled carefully. On the other

hand, some engineering approximations are involved in

the work in [4].

In the present paper, fin-line structures are analyzed

using the spectral domain technique, which has been

developed for t~e analysis of various printed transmission
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lines for microwave integrated circuits [6], [7]. In this

method, the information on the propagation constant at a

given frequency is extracted from algebraic equations that

relate Fourier transforms of the currents on the fins to

those of the electric field in the dielectric– air interface.

These equations are discrete Fourier transforms* of cou-

pled integral equations one would obtain if the formula-

tion is done in the space domain. Obviously, algebraic

equations are much easier to handle in numerical process-

ing. In addition to standard features of the spectral do-

main technique, the present work contains the following

provisions.

1) The accuracy of the method is checked by comparing

results obtained from three different choices of basis

functions. A convergence check is also performed by

increasing the number of basis functions for one of these

sets,

2) In addition, dispersion curves for higher order modes

are presented. For practical applications, the knowledge

of higher order modes is important, because often a single

mode operation is required.

3) Another important quantity for design purposes is

the characteristic impedance of the dominant mode. By

applying a definition suitable to fin-line structures, useful

results for the characteristic impedance could be obtained

and are presented in this paper.

II. FORMULATION OF THE EIGENVALUE PROBLEM

Since the details of the spectral domain method itself

have been reported in [6] and [7], only the key steps will
be given here. The method of using alternative sets of

basis functions for accuracy checks has recently been

1Henceforth referred to as Fourier transform.
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