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Design Equations for Symmetric
Microstrip DC Blocks

DARKO KAJFEZ, SENIOR MEMBER, IEEE, AND B. SARMA VIDULA, MEMBER, IEEE

Abstract—The design formulas are presented for achieving either a
rippled or a maximally flat response of the dc blocks built with symmetri-
cal coupled microstrip lines. The selection of characteristic impedances of
the odd and even modes is facilitated by the use of a universal diagram
containing the equicontours of the standing wave ratio and of the band-
width, The deformation of the frequency response due to a difference in
wavelengths of the odd and even modes is analyzed and the design
procedure is adjusted accordingly.

I. INTRODUCTION

A SECTION of parallel coupled symmetric transmis-
sion line can be used to transmit certain range of
microwave frequencies without attenuation, but acts as an
open circuit at dc. La Combe and Cohen [1] have named
such a device a dc block, and reported the experimental
data showing a wide-band operation of the device de-
signed on microstrip. Rizzoli [2] has approached the de-
sign of dc blocks from the TEM assumption, and pre-
sented design formulas and graphs for selected special
cases. We intend to present the results of further investiga-
tion of the properties of the dc blocks. Our analysis is
based on an exact expression of the scattering parameter
S,; which fully takes into account the possibility that the
propagation modes on coupled microstrip are of the quasi
TEM type, and that the input and output impedances
may be different from each other. It will be shown that
the design procedure can be based on the equations for
the pure TEM modes, and that the presence of the quasi
TEM modes requires only a minor correction of the
physical length of the coupled section. It will also be
shown that there exist two different solutions both yield-
ing a rippled response with the prescribed bandwidth and
the prescribed standing wave ratio. The presentation is
organized in such a way that either the values of Z,, and
Z,, can be computed for a prescribed bandwidth and
prescribed standing wave ratio or the attainable band-
width and standing wave ratio may be read from the
curves on the normalized Z,,, Z,, plane.

II. FREQUENCY RESPONSE OF THE TRANSMISSION
COEFFICIENT

The dc block in Fig. 1 is inserted between a generator
with internal resistance R, and load resistance R,. The
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Fig. 1. Coupled transmission-line dc block.
operating properties of this circuit can be best described
by the scattering matrix transmission coefficient S,,. For
the case that the even and the odd mode wavelengths
differ from each other due to the presence of inhomoge-
neous dielectrics, the transmission coefficient is

Lecosecl,~Z cosecd)
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(Z,,cotf,+2Z,,cotd,)
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The above equation has been derived from the formulas
given by Zysman and Johnson [3] by performing the
transformation from the chain matrix to scattering matrix
[4]. The electric lengths of the even and odd mode (in
radians) are

b.=klNe,,  6,=kiVe,, )

with k being the free-space propagation constant
k=wVpg,. (3)
Symbols ¢,, and ¢, denote the relative dielectric constants

of the odd and even modes. The coupled transmission line
has length /, and it is symmetric so that the modes of
propagation are strictly odd and strictly even, described
by the characteristic impedances Z,, and Z,,,.

It is convenient to introduce the normalized odd and
even mode impedances

V4

z = oe z = 00

e 4
VR,R,
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and the impedance transformation parameter

2. (Rl "'RZ)2

4R,R, ()

The frequency dependence will be described in terms of
variables Q, and ©,

Q,=cotf, Q,=cotd, .

(6)
The quantity of interest in the design of the dc block is the
squared amplitude of the transmission coefficient, the

transmission loss
zpfl+@2 ~zpfir02)

(4n2(zeﬂe +2,9,)+ { (22 +z2+4)

—-zez,,[szeszoﬂ/a+93)(1+9§) ]})2 ¢

From this expression it is possible to study how the
difference in the wavelengths of the odd and even modes
influences the overall response as a function of frequency.
This will be done in Section VI. In order to understand
the basic mechanism of the frequency dependence, (7) will
be first simplified for the special case of pure TEM
propagation, when the two modes have the same wave-
length

|5’21|2=

0,=6,=6. ®)
Then, the expression for the transmission loss takes the
following form:
1+ 92

[Sy |} ————.
a,+a,Q*+a,0*

©)

The coefficients of the polynomial in the denominator are

_ (z,—z,)+4 |
ao—[ 4(Ze—Zo) (10)
4x2(ze~zo)2—2zezo[(z,_,—-zo)2+4—8x2] an
A=
: 4(z,~2,)"
zeza 2
af(;:’;‘)- (12)

As seen in (9) |S,,|? is a ratio of a linear and another
quadratic expression in terms of Q2. Naturally, the idea
occurs to choose the coefficients in such a manner that
some Chebyshev-like or a Butterworth-like response is
obtained. This can indeed be achieved if appropriate care
is taken in two inconveniences: first, (10) to (12) are
nonlinear in z, and z,, and second, there are three coeffi-
cients: a,, a,, and a,, but only two really independent
variables: z, and z,. In most applications, k2 is namely
equal to unity.

The transmission loss is a symmetric function of
frequency variable 2. By a proper choice of coefficients
ag, a,, and a,, the frequency dependence may be shaped
in the form of a ripple such as shown in Fig. 2. At the
center frequency of operation, the frequency variable @ is
zero, and |8y, |*>=1/a,. If the dc block is assumed to be
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Fig. 2. Rippled response.

lossless, the standing wave ratio S at the input port is
related to a, as follows:

ap= (S:-Sl) . (13)

The position of the two maxima in Fig. 2 may be obtained
from the requirement that the first derivative of (9) with
respect to  is zero. This requirement gives

%4,

Q=-1+
a,

1+ (149)
The cutoff point 2, is defined as a point in which |$;,|?
takes the same value 1/a, as at the center frequency

a2

_Go—a,
= ——-—a4 . (15)

The value of @, specifies the frequency bandwidth as
follows: If the lower edge frequency is f, and the upper
edge frequency is f,, then the relative bandwidth can be
defined as

h=h
B =2-"——. L6
=275, (16)
The relationship with the variable @ is then
T B,
Qc"COt[E(l“E')}- 17)
The second derivative of |S,,|? at 2=0is
d2ls221'2 = 2(00_2.a2) . (]8)
aQ Q=0 ag

The condition for the existence of ripple is that (18) is
positive. If (18) is made equal to zero, a maximally flat
response is obtained (see Section. IV).

111

Coefficient a, determines the value of the response at
the center frequency, as shown if Fig. 2. Since the input
standing wave ratio S should not exceed certain pre-
scribed value, a, is specified by (13). Solving (10) for
z,—z,, the following two solutions are obtained:

2

227252

DEsIGN FOR RIPPLE RESPONSE

z,—2,,=2VS (19)

Subscripts 1 and 2 have been used to denote solution one
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and solution two correspondingly. From (12) it follows
that the two solutions are related as

2V
2,42, =2VS Va,, b

Z2e2252= (20)
A second subscript has been added to a, to denote the
possibility of two different choices for this coefficient,
corresponding to either solution one or solution two.

An important design parameter is the bandwidth of the
device which is related to the coefficients ay, a,, and a,
by (15). Since a, is already fixed by (13), it is now possible
to eliminate a, from (11) and (15) and find the values a,,
and a4, which are to be used in (20).

It is noted that (11) contains an additional parameter
k2, which does not appear in (10) or (12). The significance
of this impedance transformation parameter may be a
topic of a separate investigation [4], [S]. At present, it will
be assumed that the source and the load impedances are
equal to each other, so that x? is unity. Then, the two

positive solutions for Va, are found from (11) and (15)

as follows:
S—1 { 2]
a4 =—— 1+\/1+Qc (21
"oV
%2=—§:1—[—1+V1+92] (22)
2VS Q2 ‘

These values are now substituted in (20), which together
with (19) gives a system of two equations for the normal-
ized even and odd mode impedances in terms of the
prescribed standing wave ratio and bandwidth. Therefore,
when R, = R,, the following design equations are obtained
for solution one:

24=VS 1+\/1+ﬂ(1_1) 23)
Q2 S
[ ———
£,=VS —1+\A+EA@%3_(1__;.) . (24)
Q;

The design equations for solution two are

= —1+3[1+92
282———— 1+V1+ 92 < (S_l) (25)

S

-

202

- —1+y1+9Q2
1+\/1+_Q[2:(S_1)

(26)

An interesting conclusion which can be reached from
these formulas is the fact that any arbitrary combination
of the chosen values for the bandwidth and the standing
wave ratio can be achieved by real and positive values of
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z, and z,. Whether these values can be fabricated in a
given microstrip configuration is a question which will be
addressed later in Section V.

The magnitude of the scattering coefficient S,, of a
passive two-port cannot be larger than unity. In Fig. 2, the
maximum value of | S,;|? is denoted by 1/a,,. For a ripple
design a,, is bounded by

27

t is of interest to find the values which a,, attains for
the two designs named solutions one and two. When
Q=Q,, such as specified by (14), a,, can be computed
from (9) as follows:

1<aq,<a,.

a,=ay—a,S. (28)

For solution one, a, is specified by (21). It is then found
that

a,, =1 (29)

m

for any selection of €, and S. Therefore, when z, and z,
are selected in accordance with (23) and (24), the resulting
response |S,,|? always touches the value of unity at the
two maxima shown in Fig. 2. On the other hand, solution
two results in the following a,,:

(S+1)° (S*l)z[ 2 }2
- - —1+y1+92 |
“m2” 25 459! ‘

This value never becomes unity, but is always smaller
than a, in accordance with (27). For small and moderate
bandwidths £,< 1, and a,,, is only slightly different from
a,. In that case, the frequency response of solution two
looks almost like a maximally flat response.

(30)

IV. DESIGN FOR MAXIMALLY FLAT RESPONSE

The frequency becomes maximally flat when the second
derivative from (18) vanishes, i.e., when 4, is equal to a,.
If a perfect impedance match is to be achieved at the
center frequency, a, should be unity. Therefore, a maxi-
mally flat dc block, which is also reflectionless at the
center frequency, requires the following choice of coeffi-
cients:

€2y

Substituting (31) into (9), the following frequency re-
sponse is obtained:

a0=a2=1.

1+ 92

—_— 32
1+Q%2+4,0° (32)

|Szllz=

Therefore, a, is the only parameter which can be selected
to influence the bandwidth of the device.

Comparing Fig. 3 with Fig. 2, is seen that the band-
width and the cutoff frequency of the maximally flat
device must be defined in a somewhat different manner
than in the case of the ripple response. Hence, the cutoff
frequency _ will be defined as the frequency at which the
coefficient |S,,|> drops to the value 1/a,, where a, is
related to the input standing wave ratio S, in the same
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Fig. 3. Maximally flat response.
way as in (13)

(S, +1)
a. = -——4—5-;—- . (33)
The relationship between Q, and the relative bandwidth B,
remains the same as in (17).
When the requirement a,=1 is substituted in (10), the
solution for z,—z, is found to be single valued

z,—z,=2. (34)
When this is used in (12) it follows
z,z,=2Va, . (35)

It was found earlier that the maximally flat response
requires a, to be unity. From (11), (34), and (35) it follows

a,=xk*+2Va, (x*-1). (36)

When the impedance transforming parameter «2 is larger
than unity (i.e., when R, R,), it is impossible to make a,
equal to unity. Therefore, the maximally flat response can
be achieved only when the input and output resistances
are the same. In such a nontransforming case k2=1, and
a, in (36) is identically equal to unity, irrespective of the
value a,.

At the cutoff frequency €, the value of |S;,
1/a,. The value of a, is then found from (32)

_ (1+92)(a.—1)
________Q:

|2 drops to

ay

€y

where a, is specified by (33). The above value of a, is now
substituted in (35), which together with (34) gives a system
of two equations for z, and z,. The design equations for
the maximally flat response are then found to be

ze=1+\/1+

_ 2
z,=—1+\[14 5 l.lﬁ*'zﬂc . (39)
Vs, %

It is seen that the real positive solutions will be obtained

2
Sc‘_l . 1+Qc (38)

Vs, %
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Fig. 4. (a)(Z,,,Z,,) plane for substrate ¢,=9. (b) (¢,,, ¢,,) plane for
substrate €, =9.

for z, and z, with arbitrary choice of design parameters §
and ..

When the coefficient a, is selected to be equal to 0.25,
the microstrip dc block achieves the dimensions of a 3-dB
directional coupler. This particular case has been analyzed
by Ho [6], and has been later found by Rizzoli [2] as
unfeasible in conventional microstrip technology. Our
equation (37) offers more room for compromise between
the bandwidth and the standing wave ratio.

V. GRAPHICAL PRESENTATION ON THE (z,, z,)
PLANE

For a given substrate, the possible range of values Z,,
and Z,, may be plotted in a diagram such as shown in
Fig. 4(a), which has been introduced by Chambers [7].
The parameters in this diagram are the strip width w and
the gap width s. The advantage of this representation is
that one can easily spot the areas which are not well
suited for fabrication, either because of narrow gap, or
because of narrow conductor width. From the designer’s
point of view, it would be convenient to have an answer to
the following problem: for a given choice of Z,, and Z,,
find the corresponding bandwidth and the standing wave
ratio of the dc block.

The universal graphical solution to this problem can be
presented on a normalized (z,, z,) plane. It is assumed
that the load and source impedances are equal to each
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Fig. 5. Universal (z,, z,) plane.

other, so that the two solutions for the normalized even-
and odd-mode impedances for the ripple behavior are
specified by (23) to (26). For solution one, an auxiliary
frequency function ®(£2,) can now be defined as follows:

1+/1+Q2
If ® is eliminated from (23) and (24), the following is
obtained:

z,—z =2VS .

e [

(41)

On the (z,, z,) plane, this is a straight line inclined 45° (if
z, and z, are drawn in the same scale), which intersects
the z, axis at the point 2VS . All the points located above

the line $=1 belong to solution one.
The bandwidth can be found by eliminating S from (23)
and (24). The result of such elimination is

2 20+4
S

z,z,+z3=4. (42)
This is the equation of a rotated hyperbola, centered at
the origin, as shown in Fig. 5. For each relative bandwidth
B, a corresponding {_ was computed by (16), then ®(Q2,)
was computed by (40), and the resulting curve z.(z,) was
plotted point by point. The obtained diagram is universal,
since it is plotted in normalized values z, and z,. The
designer can immediately spot in which direction on the
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(z,,z,) plane he must move in order to increase the
bandwidth or to reduce the standing wave ratio.

If one desires a numerical answer instead of the graphi-
cal, one may use (41) directly for computation of the
standing wave ratio. In order to compute the bandwidth,
one solves (42) for @

4
=TT (43)
(Ze_zo) —4
Next, (40) is solved for Q2
1(1
2_4f1
2= ( : +2). (44)
Finally, one finds the relative bandwidth from (18)
B,=2~%cot“lﬂc. (45)

It may be seen from (44) that any positive values of @
results in a real B,. Therefore, all the points above the
straight line for S=1 give an acceptable ripple solution
with a real positive value for .

The discussion of solution two runs similarly, yielding a
somewhat more restricted area on the (z,, z,) plane. First,
an auxiliary frequency function ¥(2.) is defined as fol-

lows:
—1+\1+Q2
¥(Q,)= _JZ

92

When V¥ is eliminated from (25) and (26), the following is
obtained:

(46)

2

Z,—7Z,=——.

¢ VS

This equation specifies a family of straight lines inclined
45° with respect to the z, axis. These lines are located
below the line S=1, as can be seen in Fig. 5. The
bandwidth may be read from the curves which are ob-
tained by eliminating S from (25) and (26)

(47)

¥

These are again hyperbolas, When (48) is solved for ¥,
one obtains the expression for numerical determination
of ¥

2
z,+

(48)

z,z,+22=4,

4z,z,
¥()=———. (49)
4-— (ze —ZO)
The cutoff frequency variable is then
1/1
2. -1
2= (3 -2) ()

and the bandwidth B, is afterwards computed by (45). The
largest value which ¥ can achieve is 0.5, otherwise 2
becomes negative and there is no real solution for the
ripple bandwidth. In Fig. 5 is seen that the points belong-
ing to solution two are located in the area below the B.=0
curve. For common microstrip substrates and for the
characteristic impedance 50 {2, this area is usually not
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within the range of practical dimensions. For example,
taking S=1.2 and B,=0.5, the solution two for the 50 Q
impedance requires Z,,=93.4 @ and Z,,=2.14 Q. These
values would require an extraordinarily narrow gap in the
conventional microstrip technique. However, solution two
may turn out to be feasible in another technique, such as
the suspended microstrip.

Fig. § clearly identifies several regions on the (z,, z,)
plane. The straight line inclined 45°, starting at the point
z,=2, z,=0, designates the points which produce the
maximally flat response. The rippled response for solution
one (i.e., the response with a,,=1) is obtained if the point
is selected above this straight line, whereas the points
immediately below the straight line produce a nonrippled
response. The area around the origin, limited by the curve
B, =0 also results in a rippled response, which corresponds
to solution two (with a,,>1, the ripple not fully de-
veloped). Therefore, for any particular choice of Z,, and
Z,, the designer may immediately see from the diagram
which type of response will be obtained.

VI. EFFECT OF THE DIELECTRIC INHOMOGENEITY

\ On a symmetrical coupled microstrip, the propagation
modes are not pure transverse electromagnetic (TEM),
but rather hybrid electromagnetic (HEM) [8]. The two

dominant HEM modes, the odd and even modes, have no’

cutoff frequency and exhibit a behavior common to TEM
modes; because of that, they are called quasi-TEM modes.
While both odd and even TEM modes have equal wave-
lengths, the wavelength of the odd and even quasi-TEM
modes on microstrip may differ from each other for 10
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Fig. 6. Nondispersive behavior of 4, and 4,.

The computed values of ¢,. and ¢,, for the microstrip
substrate with €,=9 are shown in Fig. 4(b). For a given
choice of Z,, and Z,, the normalized dimensions s/k and
w/h may be read from Fig. 4(a). Then, the corresponding
€,, and ¢,, are found in Fig. 4(b). It is seen from the figure
that ¢,, and ¢,, do not differ much from each other.
Therefore, angle § is small in comparison with /2.
When (52) is substituted in (7) the amplitude of the

transmission coefficient S;, becomes

4(1+tan? 8)(ze—zo)2(1 +92,)U?
Vi+w? ¢4

where the quantities U2, V2, and W? are defined as
follows:

|321!2=

V2=4x

percent or more. In this section, it will be investigated
how the difference in wavelengths influences the frequency

2

Uie z,(1-9,,tan8)~z (1+Q,,+tand) (55)
(2.-2,)(1— 22, tar’8)
| 2R, —tand)(1-Q,, tand) +z,(Q,, + tan8)(1+Q,,tan d) | (56)
1—-92 tan’$§
Q2 2502 \ [°
1 1422, +tan® 89
2__ ) (2,2 _ av av

w [2(ze +22+4) zezo( -0’8 ) .(57)

response of the dc block.

In the low microwave region the dispersion is not
significant, and both even- and odd-mode electrical lengths
6, and 8, of a coupled section of physical length / are
linear functions of frequency as dictated by (2) and (3).
The linear relationship is illustrated in Fig. 6. The average
value of the two electrical lengths is denoted by 4,,

6,+40,
oav = 2 (5 1)
The deviation of 4, or §, from 8, is denoted by &
8=0av_00=0e—0av’ (52)

In terms of the effective dielectric constants of the even
and odd modes § becomes

455

= 53
2h| Ve, +Ve, .

Since & is small, terms tan®8 can be neglected. Introducing
again the coefficients a,, a,, and a,, the frequency re-
sponse simplifies to

|S2||2=

1+92, .(l—el). (58)

a0+a292v+a49:v 1_62

The first part of the expression is identical with the
frequency response of a pure TEM dc block, with £,
taking the place of the frequency variable. The part in
parenthesis consists of two error terms specified as fol-
lows:

z,+z, .
e, =2;:-_-_—2: Q, tand (59)
+ 1+Q2
e,=2x22e" %0 . ¥ ___Q tand. (60)

2,72, ag+a, 2, +a,0d,
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Both these terms are small in comparison with unity and
both have the same sign. When e;=e,, the factor in
parenthesis of (58) becomes unity, and [S,,|? is expressed
by the same formula as in the pure TEM case. If the
coefficients a, to a, are selected in accordance with solu-
tion one, it is seen from (60) that e,=e; at the two
frequencies Q,, =%, and @ =8, . At these two fre-
quencies the ripple response reaches unity for the quasi-
TEM section, just the same as it did for the pure TEM
section. At other frequencies there is a small difference
between the two responses. This difference has been com-
puted numerically for the design example from Section
VII and it has been found that within the passband the
difference from the ideal response is less than 0.002 dB.

The design of the microstrip dc block can be therefore
based on the formulas which were derived previously for
the pure TEM case. After selecting Z,, and Z, , the
values of the ¢,, and ¢,, are found from the diagrams in
Fig. 4(a) and 4(b). Then the “average” effective dielectric
constant is computed from

\/ + V
Ve, o = % (61)

and the physical length of the coupled section is selected
to be one quarter of the average wavelength

A

~Z—V S (62)
4Ve

r,av

l=

where A is the free-space wavelength. The resulting ripple
behavior is, for all practical purposes, identical with an
ideal response of a pure TEM case.

VIL

The design objectives were chosen as S=1.19 and B,=
0.4 with R;=R,=50 . From (23) and (24), the normal-
ized even and odd impedances (solution one) are com-
puted to be z,=3.300 and z,=1.119. Denormalizing in
accordance with (4) gives Z,,=165.0 @ and Z,,=55.93 Q.
The dc block is to be constructed on a substrate 1.857 mm
thick (62.5 mil) with ¢,=9.0. From diagram 4(a) the
normalized dimensions are found to be w/h=0.097 and
§/h=0.11. Therefore, w=0.15 mm and s=0.17 mm. From
diagram 4(b), the corresponding effective dielectric con-
stants are found to be ¢,,=5.67 and ¢,,=5.02. Then the
average effective dielectric constant from (61) is Ve, ,, =
2.31. Taking the center frequency to be 3.0 GHz, the
length of the coupled section is computed from (62) to be
10.82 mm.

The fabrication procedure by photoetching does not
result in very precise dimensions. Under the microscope, it
was found that the average conductor width is 0.158 mm
and the average spacing is 0.227 mm, the latter being
considerably off the design value. If these dimensions are
used to recompute the actual values of the even- and
odd-mode characteristic impedance, it is found that Z_ =
158.6 and Z ,=59.19 Q (instead of 165.0 and 55.93). It
would be possible to correct the mask accordingly and
repeat the fabrication so that the dimensions come closer

DESIGN EXAMPLE
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Fig. 7. Measured return loss.
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Fig. 8. Measured transmission loss.

to the design values. This was not done, and the device
was measured as fabricated.

The measured results are shown in Figs. 7 and 8. Each
figure includes two separate recordings for the forward
and reverse connections of the microstrip dc block, re-
spectively. The input standing wave ratio in Fig. 7 is
better than 1.19 (—21 dB) in the range from 2.4 GHz to
about 3.6 GHz, with an exception at 3.36 GHz. Taking
into account that the transitions from coax to microstrip
may be producing some additional mismatch, the agree-
ment for the input standing wave ratio is satisfactory.

The transmission loss is shown in Fig. 8. Within the
design bandwidth, the measured value is found to vary
between 0.6 dB and 0.8 dB. About 0.15 dB of this loss is
attributed to the microstrip and coaxial line leading to the
coupled section, and the remaining attenuation is due to
the disspative loss within the coupled section.

It may come as a surprise that the ripple is not visible in
the measured curves in Fig. 8. One must realize, however,
that the ripple which corresponds to S=1.19 is only
0.0328 dB, too small a value to be visible on the display
utilized here. In addition to this, actual dimensions are not
such as theoretical. In Fig. 4(a), the theoretical goal is
point A4, located on the straight line S-1.19. The actual
dimensions of the coupled microstrip are presented by
point B. It can be seen that we have actually achieved the
maximally flat operation, since point B is located right on
the line S=1.

Another model designed for a narrower bandwidth and
smaller standing wave ratio was also operating quite close
to the design goals. The design procedure described above
is thus found to be useful for practical applications, and
the mechanical tolerances do not seem to be excessively
demanding,
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Spectral Domain Analysis of Dominant and
Higher Order Modes in Fin-Lines

LORENZ-PETER SCHMIDT anDp TATSUO ITOH, SENIOR MEMBER, IEEE

Abstract-—The spectral domain analysis is applied for deriving disper-

n characteristics of dominant and higher order modes in fin-line struc-
tures. In addition to the propagation constant, the characteristic impedance
is calculated based on the power—voltage definition. Numerical results are
compared for different choices of basis functions and allow to estimate the
accuracy of the solution.

I. INTRODUCTION

HE FIN-LINE structure is a special printed transmis-
sion line proposed for millimeter wave integrated
circuits in 1973 by Meier [1]. Since then, a number of
millimeter-wave components have been developed in the
fin-line form (e.g., [2]). The single-mode range of frequency
is relatively wide, as the fin-line somewhat resembles the
ridged waveguide. Propagation characteristics of fin-line
structures have been investigated by a number of workers
such as Hofmann [3]), Hoefer [4], [5], and Saad and
Begemann [10]. In [3], which is based on Galerkin’s method
in the space domain, sinusoidal functions are used as
expansion functions. Hence a comparatively large number
of expansion functions is required to obtain accurate
results and, in addition, relative convergence problems
occur and have to be handled carefully. On the other
hand, some engineering approximations are involved in
the work in [4].
In the present paper, fin-line structures are analyzed
using the spectral domain technique, which has been
developed for the analysis of various printed transmission
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lines for microwave integrated circuits [6], [7]. In this
method, the information on the propagation constant at a
given frequency is extracted from algebraic equations that
relate Fourier transforms of the currents on the fins to
those of the electric field in the dielectric—air interface.
These equations are discrete Fourier transforms' of cou-
pled integral equations one would obtain if the formula-
tion is done in the space domain. Obviously, algebraic
equations are much easier to handle in numerical process-
ing. In addition to standard features of the spectral do-
main technique, the present work contains the following
provisions.

1) The accuracy of the method is checked by comparing
results obtained from three different choices of basis
functions. A convergence check is also performed by
increasing the number of basis functions for one of these
sets,

2) In addition, dispersion curves for higher order modes
are presented. For practical applications, the knowledge
of higher order modes is important, because often a single
mode operation is required.

3) Another important quantity for design purposes is
the characteristic impedance of the dominant mode. By
applying a definition suitable to fin-line structures, useful
results for the characteristic impedance could be obtained
and are presented in this paper.

II. FORMULATION OF THE EIGENVALUE PROBLEM

Since the details of the spectral domain method itself
have been reported in [6] and [7], only the key steps will
be given here. The method of using alternative sets of
basis functions for accuracy checks has recently been

"Henceforth referred to as Fourier transform.
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